Strong Bounds for Evolution in Undirected Graphs
نویسندگان
چکیده
This work studies the generalized Moran process, as introduced by Lieberman, Hauert, and Nowak [Nature, 433:312-316, 2005], where the individuals of a population reside on the vertices of an undirected connected graph. The initial population has a single mutant of a fitness value r (typically r > 1), residing at some vertex v of the graph, while every other vertex is initially occupied by an individual of fitness 1. At every step of this process, an individual (i.e. vertex) is randomly chosen for reproduction with probability proportional to its fitness, and then it places a copy of itself on a random neighbor, thus replacing the individual that was residing there. The main quantity of interest is the fixation probability, i.e. the probability that eventually the whole graph is occupied by descendants of the mutant. In this work we concentrate on the fixation probability when the mutant is initially on a specific vertex v, thus refining the older notion of Lieberman et al. which studied the fixation probability when the initial mutant is placed at a random vertex. We then aim at finding graphs that have many “strong starts” (or many “weak starts”) for the mutant. Thus we introduce a parameterized notion of selective amplifiers (resp. selective suppressors) of evolution, i.e. graphs with at least some h(n) vertices (starting points of the mutant), which fixate the graph with large (resp. with small) probability. We prove the existence of strong selective amplifiers (i.e. for h(n) = Θ(n) vertices v the fixation probability of v is at least 1 − c(r) n for a function c(r) that depends only on r). We also prove the existence of quite strong selective suppressors. Regarding the traditional notion of fixation probability from a random start, we provide the first non-trivial upper and lower bounds: first, we demonstrate the non-existence of “strong universal” amplifiers, i.e. we prove that for any undirected graph the fixation probability from a random start is at most 1 − c(r) n3/4 . Finally we prove the Thermal Theorem, which states that for any undirected graph, when the mutant starts at vertex v, the fixation probability at least (r − 1)/(r + deg v degmin ). This implies the first nontrivial lower bound for the usual notion of fixation probability, which is almost tight. This theorem extends the “Isothermal Theorem” of Lieberman et al. for regular graphs. Our proof techniques are original and are based on new domination arguments which may be of general interest in Markov Processes that are of the general birth-death type.
منابع مشابه
Strong Subgraph $k$-connectivity
Generalized connectivity introduced by Hager (1985) has been studied extensively in undirected graphs and become an established area in undirected graph theory. For connectivity problems, directed graphs can be considered as generalizations of undirected graphs. In this paper, we introduce a natural extension of generalized k-connectivity of undirected graphs to directed graphs (we call it stro...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملOn global (strong) defensive alliances in some product graphs
A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...
متن کاملThe Guessing Number of Undirected Graphs
Riis [Electron. J. Combin., 14(1):R44, 2007] introduced a guessing game for graphs which is equivalent to finding protocols for network coding. In this paper we prove upper and lower bounds for the winning probability of the guessing game on undirected graphs. We find optimal bounds for perfect graphs and minimally imperfect graphs, and present a conjecture relating the exact value for all grap...
متن کاملStrong Alliances in Graphs
For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1211.2384 شماره
صفحات -
تاریخ انتشار 2012